C-BGP User’s Guide
(version 1.1.20)

Bruno Quoitin
Sebastien Tandel

Computing Science and Engineering Department
Universite catholique de Louvain
Louvain-la-Neuve, Belgium

July 12, 2005

Abstract

C-BGP is an efficient BGP decision process simulator. C-BGP can be used to experiment with modified
decision processes and additional BGP attributes. It can also be used to evaluate the impact of input/output
policies on the routing tables of other ASes. Thanks to its efficiency, it can be used with large topologies
with sizes of the same order of magnitude than the Internet.

C-BGP is open source, written in C language and has been tested on various platforms like Linux,
FreeBSD and Solaris. The BGP model implemented in C-BGP is not hindered by the transmission of BGP
messages on simulated TCP connections as in packet-level simulators such as SSFNet or JavaSim. The
simulator supports the complete BGP decision process, import and export filters, redistribution communi-
ties and route-reflectors. It is easily configurable through a CISCO-like command-line interface. C-BGP
does not model the various BGP timers (MRAI, dampening, ...) and has a simplified session management.

To make large simulations easier to perform, C-BGP is able to load interdomain topologies produced
by University of Berkeley and is also able to output all the exchanged BGP messages in MRTD format so
that existing analysis scripts may be re-used. The simulator can load real BGP routing tables in MRTD
format and can also save the routing tables resulting from a simulation in MRTD format.

Published: 2005

(© 2003, 2004, 2005, Bruno Quoitin

Computer Science and Engineering Department
Universite catholique de Louvain

Place Sainte-Barbe, 2

1348 Louvain-la-Neuve

Belgium

The authors are particularly grateful to Steve Uhlig, Cristel Pelsser, Cedric de Launois and Olivier Bonaven-
ture from Universite catholique de Louvain (UCL) and to Fabian Skivee, Olivier Delcourt, Simon Balon
and Jean Lepropre from University of Liege (ULg) for their comments and tests. Thanks also to Wolfgang
Muhlbauer and Olaf Maennel from Technical Univertity of Munich (Germany).

The following people have also been strugling with the documentation and have therefore helped to
improve it in some way: Tarek Guerniche, Jean-Francois Paque, Virginie Van den Schrieck and Fabienne
Delbrouck.

This work was supported by the European Commission within the ATRIUM project (www . alcatel _be/atrium)
and is now being continued under the TOTEM project (totem. info.ucl .ac.be). This work is also
supported by the e-NEXT European Network of Excellence and by a grant of France Telecom R&D.

Contents

1 Installation

11
1.2
13
14
15

Requirements
LIBGDS installation
C-BGPinstallation
Installation in another directory
Summary of options

2 User interface

21
2.2
2.3
24
25

Command-lineusage e e
Interactive mode L
Completionof commands
Historyof commands
Scriptmode e

3 Commands reference

3.1
3.2
3.3
3.4
3.5

Introduction e
Network relatedcommands e
BGPrelatedcommands e
Simulationrelated commands.
General purpose commandso

4 Filters

4.1
4.2
4.3
4.4

Introduction e e
Predicates e
ACtiONS e
Example e

5 Examples

51
52
5.3
54

Simple two-routerstopology
eBGP and iBGP SeSSioNS
Domains and SPT computation
Multi-Exit-Discriminator

A Perl interface

Al
A2
A3
A4
A5

Installation e
Initialization e
Interaction e e
Checkpoints e

Logaing e e

O b bdowwow

O~NNO OO

B Java Native Interface (JNI) 36

B.1 Introduction e e 36
B.2 Installation 36
B.3 Descriptionofthe APl 36
B.4 Networkrelatedmethods 37
B.5 BGPrelatedmethods 38
B.6 Simulationrelated methods 39
B.7 General purposemethods 39
B.8 [IPAddressclass 39
B.9 IPPrefixclass e 39
B.10 Linkclass e 39
B.11 Routeinterface 39
B.12 IPRoUtE CIasSS e e 39
B.13 BGPRoute class e 39
C GNU Lesser General Public License 40

Chapter 1

| nstallation

1.1. Requirements

The building process of C-BGP relies on the GNU autoconf and automake tools. It should therefore work
on the majority of UNIX operating systems with a working C compilation chain. The building process has
been tested on various UNIX systems, mainly Linux and FreeBSD workstations as well as some Solaris
systems.

In order to be built, CBGP requires a few external libraries. The first one, libgds is provided with C-
BGP. Its building and installation processes are described in Section 1.2. C-BGP also requires libpcre, the
Perl Compatible Regular Expressions (PCRE) library. The libpcre library can be found on http://www.
pcre.org. Information on building and installing the PCRE library can be found on the PCRE web site.
You can also install the GNU readline library prior to building C-BGP if you want to use its interactive
mode. The GNU readline library and headers are freely available from http://www.gnu.org.

Before proceeding with libgds and C-BGP building and installation processes, have a look at Sec-
tion 1.5 where useful options of the building process are explained.

1.2. LIBGDSinstallation

In order to build C-BGP, you will need to build and install the libgds library. This library is freely available
from the C-BGP web site. In order to install the libgds library, download its sources libgds-x.y.z.tar.gz
(where x.y .z denotes the version of the library) and follow the installation procedure described below.
Note that some steps of this installation will require root privileges on the host where you install the library.
If you have not such privilege, please read the Section 1.4 about non-standard installation.

First, untar the archive to a temporary directory on your host:

[tmp]$ tar xvzf libgds-x.y.z.tar.gz
This should create a new directory, I ibgds-x.y.z. Move to this directory and then run ./configure.

[tmp]$ cd libgds-x.y.z
[libgds-x.y.z]$ -/configure

The configure script should run without any problem. When it is finished, simply type make clean
followed by make. That will actually build the library.

[libgds-x.y.z]$ make clean
[Tibgds-x.y.z]$ make

Once the build process is done, you must install the library. This step often requires that you have root
privileges. To proceed with the installation, login as root and type make install. The default installation
prefix is Zusr/local. The installation process will install the library file under <prefix>/11ib. It
will also install the library headers under <prefix>/include/libgds.

[libgds-x.y.z]$ su
Password:
[libgds-x.y.z]# make install

Note: under the Linux operating system, you will need to run /sbin/ldconfig in order to update the
linker’s database of shared libraries. Running Idconfig requires root privilege. If you have installed the
library under a non default path, you will probably need to update the configuration of the linker which
is located in Zetc/1d.so.config. If you have not the required privilege, you can use the alternative
environment variable LD_L IBRARY_PATH. Please refer to the documentation of your operating system.

1.3. C-BGPinstallation

Once you have successfully setup the libgds library, you can start with the C-BGP build process. You
must own the sources archive cbgp-x.y.z.tar .gz freely available from the C-BGP web site. The
procedure that you must use to build and install C-BGP is fairly similar to the above procedure used
for the libgds library. First, untar the archive in a temporary directory, this will create a new directory
cbgp-x.y.z. Move to that directory and run the ./configure script. Once the configuration script is
done, run make.

[tmp]$ tar xvzf cbgp-x.y.z.tar.gz
[tmp]$ cd cbgp-x.y.z
[cbgp-x.y.z]$./configure
[cbgp-x.y.z]$ make clean
[cbgp-x.y.z]$ make

[cbgp-x.y.z]$ make install

1.4. Installation in another directory

In certain cases, you will want to install the libgds library under another directory than the default /usr/l1ocal.
This will be the case if you have not the required privileges to install under the default prefix. In this case,

you must use the ./configure script with an additional parameter —prefix=<directory>. For instance, in
order to install under your own directory /home/user/projects:

[libgds-x.y.z]$./configure --prefix=/home/user/projects
[libgds-x.y.z]$ make clean
[libgds-x.y.z]$ make

[libgds-x.y.z]$ make install

If you have installed the libgds library in a non-standard directory, you will most probably encounter
problems during the C-BGP build process. The ./configure will probably complain because it is not able
to find the libgds library or headers. To fix this problem, you must tell the ./configure script about the
special installation path of libgds. This is done with the —with-libgds-dir parameters. The —with-libgds-dir
tells the ./configure what is the installation prefix of the libgds library (see Section 1.2). For instance, to
inform the ./configure script that you have installed the library under Zhome/user/projects, use the
following command:

[cbogp-x.y.z]$./configure --with-libgds-dir=/home/user/projects \
-—-prefix=/home/user/projects

[cbgp-x.y.z] make

[cbgp-x.y.z] make install

1.5. Summary of options

The configuration scripts provided with the libgds library and C-BGP can take a large number of options.
To get information on these options, use ./configure with the parameter —help. We summarize in Table 1.1
the options that may be useful for a regular installation.

libgds building options:
—prefix=<path> Change the installation prefix to <path>. The de-
fault installation prefix is Zusr/local.

C-BGP building options:
—prefix=<path> Change the installation prefix to <path>. The de-
fault installation prefix is Zusr/local.
—with-pcre=<path> Specifies the location of the libpcre library and
headers. This is only required if they are not in
the default library and header search paths.

—enable-jni Enable/disable the JNI interface of C-BGP. It is
—disable-jni disabled by default. See Chapter B for more in-
formation.

—with-jni-dir=<path> | Specifies the location of the JNI headers. This is
only required if they are not in the default header
search path.

—enable-readline Enable/disable the use of the GNU readline li-
—disable-readline brary. It is enabled by default.

Table 1.1: Summary of useful ./configure options.

Chapter 2

User interface

2.1. Command-line usage

In order to run the C-BGP simulator, you must type cbgp at the command line. The cbgp command
supports the following parameters on the command-line. The parameters are explained in Table 2.1.

cbgp [-h 1 [-1 <logfile>] [-c <script>1] -i]

The simulator can be launched in either of two modes. The first mode, selected using the -c parameter,
is the script mode. In this mode, the simulator reads a file which contains a sequence of commands. The
commands contained in the script file are used to setup a simulation. This mode is explained in Section 2.5.

The second mode, selected using the -i, is the interactive mode. In this mode, the simulator prompts
the user for commands. This mode is intended to users who starts using the simulator. This mode is also
useful for designing new simulation scripts. The interactive mode is described in Section 2.2

-h Display the command-line options of C-BGP.

-c <script> | Run the simulator in script mode. Load and exe-
cute the <script> file. Note: without any option,
the simulator works in script mode and commands
are taken from the standard input (stdin).

-i Run the simulator in interactive mode. Note: the
simulator must be compiled with readline to sup-
port this mode.

-I <logfile> | Specified the file that must be used to record log
messages. The default behaviour is to output log
messages on the standard error output (stderr).

Table 2.1: Command-line options supported by C-BGP.

2.2. Interactive mode

When you start C-BGP in interactive mode, by using the -i parameter, the simulator prompts you with the
following messages and waits for your input.

[user@host]$ cbgp -1
cbgp> init.
cbgp>

1Thelocation of the cbgp binary must be in your PATH environment variable.

You can then type in C-BGP commands. All the commands are described in Chapter 3. For instance,
you can enter the print command in order to get a message printed on the output.

cbgp> print ““Hello world\n”~
Hello world
cbgp>

If you enter an unknown command, C-BGP will send you an error message. For instance, if you type
“foo” at the prompt, the simulator will return the following error message:

cbgp> foo

Error: unknown conmand
*xx command: ""foo"
*** error I "/

**x* expect : bgp, include, net, pause, print, quit, set, show, sim

The error message tells you that the entered text has not been recognized as a command. Then, three
lines follow. The first one indicates the offending command. The second line indicates where the parser
found an error. Finally, the third line lists the commands that you could use instead. This list of commands
depends on the context you are in. For instance, suppose you typed in “bgp foo” at the prompt:

cbgp> bgp foo

Error: unknown conmmand

**xx command: "bgp foo"

**%* error @ "bgp "M/

**x expect : add, assert, options, route-map, router, show, topology

Since “bgp” is a valid command, the parser indicates that the offending part starts at foo. The parser
expects another sub command of the bgp command and lists these sub commands.

In interactive mode, C-BGP can also throw another type of error message: when you forgot to type in
a parameter required by a command. In this case, the error message will indicate the name of the missing
parameter. For instance:

cbgp> print

Error: mssing paraneter
**x* command: ‘‘print "
*%xx error : "print MA"
x expect : <message>

2.3. Completion of commands

2.4. History of commands

Since version 1.1.18, every time you enter a command in interactive mode, it is registered in C-BGP’s
history. Using the up/down arrows on your keyboard, you can retrieve past commands. Note that the
history of commands can be stored in a file and reloaded at the next execution.

The behaviour of the C-BGP’s history id driven by two environment variables. These environment vari-
ables control how the history of the command-line interface is stored in a file. If the CBGP_HISTFILE is
set, C-BGP will load the historic of commands from a file named 7 . cbgp_history. If CBGP_HISTFILE
is not empty, the default file name is replaced by the environment variable’s value.

In addition, the value of the CBGP_HISTFILESIZE can be set in order to limit the number of lines
that will be loaded from the history file. The value of CBGP_HISTFILESIZE must be a positive integer
value.

2.5. Script mode

In C-BGP, simulations are configured through scripts. A script is a sequence of C-BGP commands that
are used to build the topology by adding nodes and links, to setup BGP sessions and to record routing
information. The available C-BGP commands are shortly described in the following section. Before
writing scripts, let’s learn some particular features of the C-BGP scripting interface.

First, commands are grouped into functionnal classes. The net class contains commands related to the
network and the IP layer. The commands in this class are used to build a topology of nodes and links but
also to change the IP routing table of nodes, to trace the route from one node to another or even to add
IP-in-1P tunnels. The bgp class contains commands related to the BGP protocol. The commands in this
class are used to enable the BGP protocol on a particular node, to advertise local networks, to configure
BGP peerings, and so on. The sim class contains the simulator related commands, that is commands that
are used to run/stop the simulator. Finally, some commands do not belong to any of the above classes
because they are general purpose commands that serve to print a message or to include a subscript.

Second, some commands are composed of a context part. That is a part of the command can be used
alone to change the current command context. Let’s clarify this with an example. The bgp router X add
network Y is composed of the context part bgp router X which changes the command context to the
commands available in router X. If the context part of the command is executed alone, the only available
commands will be commands that start with the current context.

bgp router X
add network Y
add peer Z1 Z2

is thus equivalent to the command bgp router X add network Y followed by the command bgp router
X add peer Z1 Z2.

In order to exit the current context, type the exit command. The parent context is restored. It is also
possible to exit all the nested contexts by typing an empty command line.

Chapter 3

Commandsreference

3.1. Introduction

This section describes all the available C-BGP commands. The commands are grouped into four main
groups: net, bgp, sim and a group with miscellaneous commands.

3.2. Network related commands

net add node address

This command adds a new node to the topology. The node is identified by its IP address. This address must
be unique. When created, a new node only supports IP routing as well as a simplified ICMP protocol. If
you want to add support for the BGP protocol, consider using the bgp add router command.

net ntf load filename

This command loads the given NTF file into the simulator. An NTF file contains a description of a topol-
ogy. Each line of the file specifies an adjacency between two nodes. The nodes are identified by their
IP addresses. In addition, the file also specifies the IGP metric associated with the adjacency. It can also
optionally define the propagation delay along this adjacency.

When C-BGP loads the NTF file, it creates all the unexisting nodes and links. It will not worry if some
nodes or links already existed before the net ntf load command was called.

» Input format

<node-1> <node-2> <weight> [<delay>]

net node address ipip-enable

This command enables the support for the IP-in-IP protocol. That means that this node can behave as
a tunnel end-point. If it receives encapsulated packets with the destination address of the encapsulation
header being itself, it will decapsulate the packet and deliver it locally or try to forward it depending on the
encapsulated header content.

net node address ping destination

net node address record-route destination

This command records the addresses of the nodes that packet sent from the source address traverse to reach
the destination address.

» Output format
<source> <destination> <result> <list of hops>

where result is one of

SUCCESS The destination was reachable. In this case, the list of hops is the
list of the IP adresses of the traversed nodes.

UNREACH The destination was not reachable. In this case, the list of hops is
the list of IP addresses of the nodes traversed until no route was
available.

TOO_LONG The path towards the destination was too long (i.e. longer than
30 hops). This is often the symptom of a routing loop.

DOWN there was a route to reach the destination, but a link down was

found on the way. This indicates a misconfiguration or routing
error. This can however occur in transient states, after a link has
been brought down and the routing has not reconverged. The last
node in the list of hops indicates the node adjacent to the failing
link.

TUNNEL_UNREACH The path went through a tunnel but the tunnel end-point does not
support the IP-in-1P protocol. Consider using the net node X ip-
ip enable. The last node in the list of hops is the address of the
faulty node.

TUNNEL_BROKEN The path went through a tunnel but at a point the tunnel end-
point was not reachable. The last node in the list of hops is the
address of the faulty node.

» Example

cbgp> net node 0.1.0.1 record-route 0.2.0.2
0.1.0.1 0.2.0.2 SUCCESS 0.1.0.1 0.1.0.2 0.2.0.1 0.2.0.2

net node address route add prefix next-hop metric
This command is used to add a route towards a prefix into the node identified by address. The command
specifies the route’s next-hop and the route’s metric.

Note. Itis often more convenient to use the net node X spf-prefix command which computes
el for each node within a given prefix the shortest route according to the used metric.

net node address route del prefix { next-hop | * }

This command removes from the node identified by address a route previously added with the above
command. The route to be removed is identified by the destination prefix as well as its next-hop. A
wildcard can be used in place of the next-hop. In this case, all the routes that match the prefix will be
removed.

10

net node address show links

This command shows all the links connected to this node.

» Output format
<prefix> <delay> <metric> <state> <type> [<IGP option>]

where the state can be either UP or DOWN. The type is one of

DIRECT The link is a direct link towards the destination, i.e. the destination is
adjacent to this node.

TUNNEL The link is a tunnel to the destination, i.e. messages that traverse this
link will be encapsulated, then routed towards the tunnel end-point and
hopefully decapsulated there.

and the IGP option, if present, can contain the IGP_ADV flag which means that this link is used by the
“IGP”, i.e. it is used in the shortest-path computation performed by the net node X spf-prefix command.

» Example

cbgp> net node 0.0.0.1 show links

0.2.0.1/32 444 444 up DIRECT IGP_ADV
0.2.0.2/32 370 370 up DIRECT 1GP_ADV

net node address show rt { address | prefix | * }

This command shows the content of the routing table of node address. The command takes one parameter
to filter the output. If the filter parameter is *, all the routes are shown. If the filter parameter is an IP
address, the best route that matches the given address is shown. If the filter parameter is an IP prefix, the
exact route that matches the given prefix is shown.

» Output format
<prefix> <next-hop> <metric> <type>

where the route’s type can be one of

STATIC The route was statically installed with the net node X route add com-

mand.
IGP The route was automatically computed by the net node X spf-prefix
command.
BGP The route was learned by BGP and selected as best.
» Example
cbgp> net node 0.0.0.1 show rt =
0.1.0.1/32 0.2.0.2 0 BGP
0.2.0.1/32 0.2.0.2 0 BGP
0.2.0.2/32 0.2.0.2 0 BGP

11

net node address spf-prefix prefix

This command computes the shortest paths from the node identified by address towards all the nodes which
are in the given prefix. The metric of the computed shortest paths is equal to the sum of the IGP weights of
the traversed links. The command also adds in the node’s routing table an entry for each computed path.
These routing entries are of type IGP.

SPT computation. The shortest paths will only be composed of links whose end-points are
o in the given prefix and which have the IGP_ADV flag set (see the net node X show links
command for more information).

Note that the behaviour of this command can be slightly modified with the igp-inter option. See the
net options igp-inter statement.

net node address tunnel add end-point

This command adds a tunnel from the given node towards the tunnel end-point. Messages that will be
routed through this tunnel will be encapsulated, then routed to the end-point and decapsulated at the end-
point. Consider using the net node X ip-ip enable on the destination node to enable the decapsulation of
received messages.

net options igp-inter [on | off]

This command changes the destination nodes that are considered by the SPT computation performed by the
spf-prefix statement. If the option value is off (default), the SPT computation only considers as destinations
the nodes which strictly match the given prefix. If the option is on, the SPT computation also considers as
destinations the nodes which are tail-ends of links that leaves the nodes which match the given prefix.

This is illustrated in Fig. 3.1. In the left part of the figure, the igp-inter option is off and the nodes
which are tail-ends of the links that go outside of the considered prefix are not considered by the SPT-
computation. In the right part, those destinations are taken into account during the SPT computation and
routes are setup for these destinations in the nodes that belong to the prefix.

Domain Domain
0.1/16 0.1/16
igp-inter = off igp-inter = on
S S
=] =) 0.3.0.1 =) o =) 030.1
- - - -
0.1.0.1 0.1.0.2 0.1.0.1 0.1.0.2

0.2.0.1 ¥/\ 0.201 ¥/\

0.2.02 —— internal link 0.2.0.2

m— external link

— links considered
during SPT computation

Figure 3.1: Effect of the igp-inter option on SPT computation.

net options max-hops max-hops

This command changes the maximum number of hops used by the record-route command. The default
value is 15 hops.

12

net add link address1 address2 delay

This command adds a new link between two existing nodes whose addresses are address1 and address2
in the topology. The new link is bidirectional. The propagation delay of the link is specified by the delay
parameter. Note also that by default, the IGP-cost of the link is fixed at the same value

net link address1 address2 [down | up]

This command changes the state of a link. The link is identified using its end-points address1 and address2.
If the state of a link is changed, it is required to update the interdomain paths, using the net node spf-prefix.
If the nodes run BGP, it might also be interesting to run the bgp router rescan command.

net link address1 address2 igp-weight weight
This command changes the IGP weight of the link identified by the two end-points address1 and address2.
Warning. This command changes the IGP weight of the link in one direction only. If you

. use different weights for both directions and if you use the net node X spf-prefix command,
routing loops may be created.

3.3. BGPreated commands

bgp assert peerings-ok

This command checks that all the peerings defined in all the routers are valid, i.e. for each peering, the
existence of the peer is checked as well as the existence of a similar peering definition in the peer.

bgp assert reachability-ok

This command checks that all the prefixes announced by BGP are reachable by all the BGP routers.

bgp router addr assert routes prefix [best | feasible] match predicate

bgp router addr assert routes prefix [best | feasible] show

bgp add router as-num address

This command adds BGP support into the node identified by address. The node thus becomes a BGP
router. The command also configures this router as a member of the domain identified by as-num.

bgp domain as-num full-mesh

bgp domain as-num rescan

This command rescans the BGP routes known by all the routers in the domain. This is equivalent to calling
the bgp router rescan command for all the routers in the domain. If there is any change, the sim run
command should be called after the rescan.

13

bgp domain as-num show routers

bgp options local-pref pref

This command changes the default preference given to routes that enter a domain. The default preference
is 0, but can be changed to local-pref using this command.

bgp options med “deterministic’’ | ““always-compare”

This command changes the behaviour of the MED-based rule of the decision process. If the argument
is “deterministic”, then the rule will only compare the MED of routes received from the same AS. If the
argument is “always-compare”, the rule will compare the MED of all routes whatever the neighbor AS is.

bgp options msg-monitor out-file

This command enables the BGP message monitoring. All the BGP messages will be written in the given
out-file. If the file does not exist, it will be created. If it already exists, the file will be overwritten. The
BGP messages will be written in MRTD format, prefixed by the IP address of the destination router.

» Output format (UPDATE)

dest-ip| BGP4| time| Al peer-ip| peer-as| prefix|
as-path| origin| next-hop| local-pref| med| communities
» Output format (WITHDRAW)

dest-ip| BGP4| time| W peer-ip| peer-as| prefix

It should be easy to extract messages sent to a specific destination on the basis of the first field. Then,
existing analysis script can be used with the MRTD output.

» Example

0.2.0.0]|BGP4]0.00]A]0.1.0.0]1]0.1.0.0/16]1]1GP|0.1.0.0]100]0]

bgp options show-mode [mrt | cisco]

This command selects which output format is used to dump BGP routes. The two possible formats are mrt
or cisco. With the mrt format, routes are dumped as with the route_btoa tool from the MRTd routing
suite, using the -m option. In this format, the route’s fields are output on a single line, using a ’|” separator.
With the cisco format, routes are shown using CISCO 10S’s format.

» MRTd example

3.0.0.0/8 129.250.0.85 100 10 2914 1239 80 i

» CISCO example

_]129.250.0.85]2914]3.0.0.0/8]2914 1239 80| 1GP|129.250.0.85]100]10 \
12914:420 2914:2000 2914:3000 65504:1239]]] |

bgp router address add network prefix

This command adds a local network that will be advertised by this router. The given network will be
originated by this router.

14

bgp router address del network prefix

This command removes a local network previously added with the above command.

bgp router address load rib filename

This command is used to load a dump of a Routing Information Base (RIB) of a real router into the RIB of
the router identified by address. The RIB dump must be provided in ASCII MRT format. In addition, the
command performs control on the routes contained in the RIB dump.

First, the IP address and the AS number of the peer router specified in the MRT route records must
correspond to the given router. Second, the IP address of the BGP nexthop must correspond to an existing
peer of the router. This constraint is strong and may be relaxed in the future, since some operational
configurations can not be matched.

bgp router address add peer as-num peer-address

This command adds a new BGP neighbor to the router identified by address. The peer belongs to the
domain identified by as-num and is identified by peer-address. This command also configures for this
neighbor default input and output filters that will accept any route. See the bgp router X peer Y filter
commands for more information about the route filters.

bgp router address peer peer-address [down | up]

This command starts the establishment of the BGP session with the peer identified by peer-address (when
used with up) or shuts down the previously established session (when used with down).

bgp router address peer peer-address filter [in | out] add-rule

This command adds a rule to the input (in) or output (out) filter of the peer identified by peer-address. See
chapter 4 for more information about filters.

bgp router address peer peer-address filter [in | out] insert-rule index

This command inserts a rule at position index to the input (in) or output (out) filter of the peer identified
by peer-address. See chapter 4 for more information about filters.

bgp router address peer peer-address filter [in | out] remove-rule index

This command removes the rule at position index from the input (in) or output (out) filter of the peer
identified by peer-address. See chapter 4 for more information about filters.

bgp router address peer peer-address filter [in | out] show

This command shows the rules that compose the input (in) or output (out) filter of the peer identified by
peer-address. See chapter 4 for more information about filters.

bgp router address peer peer-address next-hop-self

bgp router address peer peer-address recv message

This command can be used on virtual peers to feed real BGP messages. The messages must be provided
in MRT format. Only UPDATE (A) and WITHDRAW (W) messages are accepted. The MRT messages
syntax is as follows:

15

» Syntax

BGP4|<time>]A]<router>|<as>|<prefix>|<path>]<origin>]|<next-hop>|<pref>|<med>|
BGP4|<time>|W]<router>|<as>|<prefix>

where time is an integer representing the time when the message was received (this field is not used by
C-BGP). The router field contains the IP address of the router where the route was collected. The as field
is the AS-number of the router where the route was collected. The prefix field represents the IP prefix of
the route. The path field is the AS-path of the route. It must be a space-separated list of AS numbers. The
origin field contains the origin of the route. The origin can be one of IGP, EGP or INCOMPLETE. The
pref field contains the value of the local-pref attribute of the route. It must be an integer. Finally, the med
field contains the value of the med attribute of the route. It must also be an integer.

» Example

cbgp> bgp router 0.1.0.1 peer 0.2.0.1 recv "BGP4| 0| Al 10. 0. 0. 1] 1| 30. 0. 1/ 24| 20 30| | GP| 20. (

bgp router address peer peer-address reset

bgp router address peer peer-address rr-client

This command configures the peer identified by peer-address as a route-reflector client. By the way, the
router identified by address becomes a route-reflector.

bgp router address peer peer-address soft-restart

This command makes possible soft-restart with virtual peers. Since the routes available to virtual peers are
learned through the bgp router peer recv command, they are lost when the session with the virtual peer is
teared down. With the soft-restart option, the Adj-RIB-in corresponding to the virtual peer is not cleared
when the session is teared down. These routes will still be available upon session restart.

bgp router address peer peer-address virtual

This command changes the peer into a virtual peer. A virtual peer is used to feed the router with real BGP
messages in MRT format. The router will not maintain a BGP session with the virtual peer. Moreover,
the router will not send BGP messages to the virtual peer. The virtual peer will only accept UPDATE and
WITHDRAW messages with the help of the “recv” statement.

bgp router address rescan

This command is used to rescan the BGP routes contained in the router identified by address. This com-
mand must be used if the outcome of the decision process depends on the interdomain routing. The com-
mand will build the list of all prefixes known by the router. Then, for each prefix, it will decide if the
decision process must be run.

bgp router address record-route prefix

This command records the AS-level route from the given router identified by address towards the given
prefix.

» Output format

<source> <destination> <status> <AS-Path>

16

» Example

cbgp> bgp router 0.0.0.1 record-route 0.1.0.1/32
0.0.0.1 0.1.0.1/32 SUCCESS 0 2 1

bgp router address set cluster-id id

bgp router address show peers

This command shows the list of peers of the router identified by address. For each peer, the command
shows the AS-number of the peer as well as the state of the BGP session with this peer. In addition, the
command also shows the options related to this peer.

The session with the peer can be in one of the following states: IDLE, ACTIVE, ESTABLISHED and
OPENWAIT. If the session if in IDLE state, that means that it is administratively down. The administrative
state of the session can be changed using the bgp router peer up/down commands. The session can also be
in ACTIVE state. This state indicates that the session is administratively up but due to the current routing
state of the network, it is not established. This occurs if there is no route towards the peer. The session can
also be in ESTABLISHED state. This state indicates that the session is currently working and that BGP
routes can be exchanged with the peer. Finally, the OPENWAIT session indicates that the session has been
partially opened. An OPEN message has been sent to the peer but no answer has been received. This can
be due to the OPEN message still being in the simulator’s queue (if sim run has not been called). This can
also occur in case of reachability problems between the local router and the peer.

» Output format

<peer> <as-num> <status> [<options>]

» Example

cbgp> bgp router 0.0.0.1 show peers
0.2.0.1 ASs2 ESTABLISHED
0.2.0.2 AS2 ESTABLISHED

bgp router address show rib { address | prefix | * }

This command shows the routes installed into the Loc-RIB of the router identified by address. The com-
mand takes one parameter to filter the output. If the filter parameter is *, all the routes are shown. If
the filter parameter is an IP address, the best route that matches the given address is shown. If the filter
parameter is an IP prefix, the exact route that matches the given prefix is shown.

» Output format
<flags> <prefix> <peer> <pref> <metric> <AS-Path> <origin>

where the flags can contain

* |If the route’s next-hop is reachable.

> If the route is a best route and is installed in the Loc-RIB.

i If the route is local, i.e. installed with the add network com-
mand.

moreover, the origin is one of

17

i If the origin router learned this route through an add network
statement.

e If the origin router learned this route from an EGP protocol.

? If the origin router learned this route through redistribution from
another protocol.

Since the only way to learn a BGP route in C-BGP is through the add network statement, the origin will
always be i.

» Example

cbgp> bgp router 0.0.0.1 showrib =

i>0.0.0.1/32 0.0.0.1 0 0 null i
*> 0.1.0.1/32 0.2.0.2 0 0 21 i
*> 0.2.0.1/32 0.2.0.2 0 0 2 i
*> 0.2.0.2/32 0.2.0.2 0 0 2 i

bgp router address show rib-in { peer | * } { address | prefix | * }

This command shows the routes received from the selected peers of the router identified by address. Thus,
this command shows the content of the Adj-RIB-Ins of the given router. The command takes two parame-
ters to filter the output. The first parameter filters the peers whose Adj-RIB-Ins are shown. The parameter
can be the IP address of the peer or * to show all the Adj-RIB-Ins. The second parameter can be * to show
all the routes. It can also be an IP address to show only the best route that matches the given address.
Finally, it can be an IP prefix. In this case, the exact route that matches the given prefix is shown.

» Output format
<flags> <prefix> <peer> <pref> <metric> <AS-Path> <origin>

(see the show rib method for more information on the fields).

» Example

cbgp> bgp router 0.0.0.1 show rib-in » »*

= 0.1.0.1/32 0.2.0.1 0 0 21 i
= 0.2.0.1/32 0.2.0.1 0 0 2 i
= 0.2.0.2/32 0.2.0.1 0 0 2 i
*> 0.1.0.1/32 0.2.0.2 0 0 21 i
*> 0.2.0.1/32 0.2.0.2 0 0 2 i
*> 0.2.0.2/32 0.2.0.2 0 0 2 i

bgp router address show rib-out { peer | * } { address | prefix | * }

bgp topology load file

This command loads a topology from the specified file. The format of the file is similar to the AS pair
relationships file specified at this address. That is each line of the file specifies a relationship between
two Internet domains. Based on this file, C-BGP builds a network where each domain is composed of a
unique router having the IP address equal to the domain’s number (AS-NUM) multiplied by 65536. For
instance, the IP address of the router which composes the domain AS7018 would be 27.106.0.0. C-BGP
also configures the BGP sessions between the network’s routers.

18

» Input format
<domain-1> <domain-2> <relationship> [<delay>]

The relationship can be O for a peer-to-peer relationship or 1 for a provider-to-customer relationship.
The optional delay parameter specifies the delay on the network link between the routers in the given
domains.

bgp topology policies

This command configures the filters of the routers according to the relationships specified in the topology
loaded by the bgp topology load command.

bgp topology record-route prefix in-file out-file

This command records the paths towards the given prefix from each router specified in the in-file and writes
those paths in the out-file. The in-file has the following format: each line contains the identifier of a domain
(i.e. its AS-NUM) from which the path has to be computed or an asterisk (*) which means that the paths
from all the routers have to be computed.

» Output format
<src-as-num> <prefix> <as-path>

» Example For instance, here is the result of the EBGP_2_ROUTERS example. The path from AS1 is
"1" because it has advertised the prefix 0.1/16. The path from AS2 is "2 1" because it has received a BGP
message with the prefix 0.1/16 from AS1.

10.1.0.0/16 1
2 0.1.0.0/716 2 1

bgp topology run

This command establishes the BGP sessions between all the routers loaded by the bgp topology load
command.

3.4. Simulation related commands

sim options log-level <level>

This command changes the verbosity of the simulator log. The available log levels are

everything Every log message is written.

debug Debug and error messages are written.

warning Error messages are written.

severe Only severe warning and fatal error messages are written.
fatal Only fatal error messages are written.

sim queue info

sim queue show

sim run

This command starts the simulator, i.e. it starts processing the queued events until no more event is available
or the simulator is stopped.

19

3.5. General purpose commands

include <file>

This command processes the commands found in the given file. The processing of the given Fi le will
stop as soon as an error occurs. Note that, in interactive mode (see Chapter 2, Section 2.3), it is possible to
use the automatic completion of the filename parameter.

pause

This command displays the message “Paused: hit Enter’ to continue...” and consistently waits until the
user press the <return> key. This command can be used in verbose simulation scripts so that the user is
able to read the results.

print <message>

This command prints a message on the current output. The default output is stdout. The print command
recognizes and interpolates the escape sequences described in Table 3.1.

\a | Print an alert to the console. Usually, this will be
transformed into an audible bell.

\e | Prints \O33 to the console. This can be used to
send ECMA-48 sequences to the console.

\n | Prints a new line.

\r | Prints a carriage return (returns to the beginning
of the line).

\t | Prints a tabulation.

Table 3.1: Escape-characters supported by the print command.

set autoflush [on | off]

This command tells C-BGP to flush the output stream after any commands which returns information. This
is important if the simulator is used by a script which waits for a response to a request. The CBGP - pm Perl
module uses this option.

set mem-limit amount

This command changes the memory limit of C-BGP to a maximum of amount bytes, using the setrlimit
system call. Normally, there is no per-process memory limitation enforced by the operating system. The
memory allocation will fail when there is no more physical memory and no more virtual memory available.
However, in certain situations, reaching both the physical and virtual memory limits may pose problems.
Especially on some systems (on Linux for instance) where the scheduler may kill the first application that
requests memory above the reached limits. Important applications may be killed even if the user who runs
the simulator has no administrative privilege. We experimented such situation, so use this option!!!

show mem-limit

This command shows the current memory limitation. The command will display two memory limits: the
soft and the hard limits. The hard limit will always be enforced by the operating system and can not be
extended. The soft limit can be changed using the set mem-limit command.

20

show mrt filename predicate

This command shows the content of a BGP routing table in MRT format. The command operates directly
on MRT in binary format, using Dan Ardelean’s libbgpdump library. Parsing MRT files directly in C-BGP
has several advantages. First, the libbgpdump library runs significantly faster than the route_btoa tool
provided with the MRTd routing suite. Second, it is possible to use filters in order to output a subset of the
BGP routes. The syntax is the same as in the BGP session filters (see Chapter. 4). Finally, it is possible to
select the output format that will be used to dump the routes, using the bgp options show-mode command.

» Example

cbgp> show nrt rib.20050701. 0009 any

0.0.0.0/0 213.140.32.148 100 0] 12956 i
2.0.0.0/8 196.7.106.245 100 0 2905 ?
3.0.0.0/8 207.246.129.6 100 0 11608 2914 1239 80
3.0.0.0/8 129.250.0.85 100 10 2914 1239 80 i
3.0.0.0/8 129.250.0.11 100 1 2914 1239 80 i
3.0.0.0/8 206.186.255.223 100 0] 2493 3602 1239 80
-2

cbgp> show nrt rib.20050701. 0009 "path ~2914"
3.0.0.0/8 129.250.0.85 100 10 2914 1239 80 i
3.0.0.0/8 129.250.0.11 100 1 2914 1239 80 i
G-

show version

This command shows the version of C-BGP. The version information can be used to check the compatibil-
ity with an existing script. The version information displayed by the command contains a version number
composed of three numerical fields (main version/sub version/release). The numerical version is followed
by informal fields which inform on compilation options. For instance the version information may be
followed by [experimental] which means that the version has been compiled using experimental
features.

21

Chapter 4

Filters

4.1. Introduction

This chapter describes the route filtering features of C-BGP. Route filtering is an important part of the
simulator since it is used to implement the policies of interdomain routing. C-BGP provides an easy to use
interface to filters similar to what can be found in real routers.

In C-BGP, the filters can be configured differently in each router. Moreover, for each BGP router
different filters can be associated to each neighbor. We also distinguish input and output filters. The first
ones are used to filter the routes that are learned from neighbors while the second ones are used to filter the
routes that are redistributed to neighbors.

A typical filter in C-BGP is a sequence of rules. Each rule being composed of two parts. The first part
of one rule is a logical combination of predicates used to check if the rule applies to a route. For instance,
a predicate can check is the tested route contains a given community. The second part of one rule is a set
of actions that are applied to the routes matching the rule’s predicates. A typical action would be to change
the route’s local preference.

In C-BGP, the filters of one router are configured using the peer X filter [in | out] familly of com-
mands. The list of these commands is given in section 3.3. The add-rule sub-command allows to add a
new rule to the given filter. Once the rule is added, the predicates and actions can be specified with the
commands described in the sections hereafter. Another sub-command makes possible to insert a new rule
in the sequence of rules of one filter. It is of course always possible to show the sequence of rules of one
filter with the show sub-commands.

4.2. Predicates

Once a new rule is added or inserted, the predicates can be specified with the match statement. This
statement takes a single parameter which is the expression of the logical combination of predicates. The
syntax of this expression is described in Fig. 4.1:

Predicate

| Predicates ’|” Predicates

| Predicates ’&’ Predicates
| ’(Predicates)’

| 1" Predicates

Predicates

Figure 4.1: Syntax of predicates.

The atomic predicates that are currently available in C-BGP are described below:

22

any

This predicate matches any route.

community is community

This predicate matches only the routes that contain the given community. The community can be written
in two forms. The first form is as an integer in the range [0, 232 — 1]. The second form is as a couple of
integers in the range [0, 2'6 — 1] separated by a colon (*:’).

next-hop in prefix

This predicate matches only the routes with a next-hop contained in the given prefix.

next-hop is address

This predicate matches only the routes with a next-hop equal to next-hop.

path reg-exp

This predicate matches only the routes with an AS-path that matches the given regular expression. The
syntax of reg-exp is similar to grep’s regular expressions since C-BGP relies on the libpcre library.

prefix in prefix

This predicate matches only the routes with a prefix which is more specific than the given prefix.

prefix is prefix

This predicate matches only the routes with a prefix which is equal to the given prefix.

4.3. Actions

In order to specify the second part of one rule, C-BGP also provides the actions statement. This statement
takes a single parameter which is a set of atomic actions separated by a comma. The actions that are
currently available in C-BGP are described below:

accept

This action accepts the route.

as-path prepend amount

This action prepends the AS-number of the router to the AS-Path of the route. The number of times
prepending is performed is given by amount.

community add community

This action adds the given community to the list of communities of the route. The community can be
specified either as a single 32-bits integer or as a couple of two 16-bits integers separated by a colon.
Special standard communities may also be specified with special identifiers: no-export or no-advertise.

23

community remove community

This action removes the given community from the list of communities of the route being filtered. The
community can be specified as explained in the community add command.

community strip

This command clears the list of communities attached to the route.

deny

This commands deny the route. If this action occurs in an input filter, the route will not be considered as
feasible. If this action occurs in an output filter, the route will not be redistributed to the peer concerned by
the filter.

local-pref pref

This command changes the local-preference of the route. The new value of the LOCAL-PREF attribute is
set to pref. Note that this command should only be used in input filters associated with peers that are in
another domain (i.e. that have a different AS-number).

metric med | “internal™

This command changes the MED of the route. The value can be specified explicitly by passing it as an
integer value to the command. Another way to set the MED value is to specify the special-value “internal”.
In this case, the MED value is set to the cost of the IGP path towards the route’s next-hop.

red-community add prepend amount target

This command attaches a redistribution community to the route. This redistribution community requests
that the neighbor domain perform prepending when it redistributes the route to the domain identified by
target.

red-community add ignore target

This command attaches a redistribution community to the route. This redistribution community requests
that the neighbor domain does not redistributes the route to the domain identified by target.

4.4. Example

In order to illustrate the above obscure explanations, this section presents an example of filters. The purpose
of this example is to define the filters required to enforce the Internet policies, that is the customer-provider
and peer-to-peer relationships.

These policies are composed of two parts. First, the filters must control the provision of transit. The
usual rule is that a domain will not provide transit to its providers, a limited transit to its peers and full
connectivity to its customers. This is known as the valley-free property.

Second, the domains usually prefer the routes learned from customers over the routes learned from
providers. The last routes being also prefered over routes learned from providers. One of the reason is that
such an ordering assures the convergence of BGP. Another reason is that domains get paid for the traffic
that transit on the links with their customers while they must pay for the traffic that transit over links with
their providers.

Such policies are easy to setup within C-BGP. Let’s take the example topology shown in Fig. 4.2. The
topology is composed of 4 domains. Domain AS1 is composed of 3 routers, R11, R12 and R13. The first

24

router, R11, is connected to R21, the router of its provider, AS2. R12 is connected to R31, the router of its
peer, AS3. Finally, R13 is connected to R41, the router of its customer, AS4.

AS2 Pprovider

R21

R11

R13

R41

Figure 4.2: Example topology with business relationships.

The following scripts show how the various peerings are setup. Note that for convenience, the script
does not contain the IP addresses of the router but their names.

bgp router R11

peer 1 R12
peer 1 R13
peer 2 R21
peer R21
filter in
add-rule
match any
action "local-pref 60, community add 1"
exit
exit
filter out
add-rule
match ‘‘community is 1"
action deny
exit
add-rule
match any
action "community strip"”
exit
exit
exit
bgp router R12
peer 1 R11
peer 1 R13
peer 3 R31
peer R31
filter in
add-rule

25

match any
action "local-pref 80, community add 1"
exit

exit

filter out

add-rule
match *‘community is 1"
action deny

exit
add-rule
match any
action ‘community strip”
exit
exit
exit
bgp router R13
peer 1 R11
peer 1 R12
peer 4 R41
peer R41
filter in
add-rule
match any
action "local-pref 100"
exit
exit
filter out
add-rule
match any
action "community strip"”
exit
exit
exit

26

Chapter 5

Examples

5.1. Simpletwo-routerstopology

This example describes how to build a simple topology composed of two BGP routers in two different
domains. The first step is to create the nodes which correspond to the routers and the link which connects
them together.

AS1 AS2

Figure 5.1: Simple two-routers topology

Building the topology is done by using the net add commands as explained below. The net node X
route add statement adds static routes over the interdomain link.

Setup the topology

net add node 0.1.0.0

net add node 0.2.0.0

net add link 0.1.0.0 0.2.0.0 5

net node 0.1.0.0 route add 0.2.0.0/32 0.2.0.0/32 5
net node 0.2.0.0 route add 0.1.0.0/32 0.1.0.0/32 5

Then, BGP has to be enabled on both nodes with the bgp add command. Moreover, each router has its
neighbors configured and finally router 0.1.0.0 will announce a local network with BGP.

Setup BGP in router 0.1.0.0
bgp add router 1 0.1.0.0
bgp router 0.1.0.0

add network 0.1/16

27

add peer 0.2.0.0
peer 0.2.0.0 up

Setup BGP in router 0.2.0.0
bgp add router 2 0.2.0.0
bgp router 0.2.0.0

add peer 0.1.0.0

peer 0.1.0.0 up

Finally, the simulation is started with the sim run command. After the simulation has converged, the
BGP routing tables of both routers can be dumped.

Run the simulation
SIim run

Dump both router’s routing table

print "Routing table of router 0.1.0.0\n"
bgp router 0.1.0.0 show rib =

print "Routing table of router 0.2.0.0\n"
bgp router 0.2.0.0 show rib =

5.2. eBGP and iBGP sessions

This example describes a somewhat more complicated configuration where 4 routers are involved. A
first domain, AS1, contains a single router, 0.1.0.0 which advertises a single network 0.1/16. The second
domain, AS2, contains 3 routers, 0.2.0.0, 0.2.0.1 and 0.2.0.2. There is an iBGP session between routers
0.2.0.0 and 0.2.0.2. Since there is no direct physical link between 0.2.0.0 and 0.2.0.2, we will add static
routes in both routers.

AS1 AS2

0.2.0.1

Figure 5.2: Simple topology with eBGP and iBGP sessions

So, the first step consists in building the topology:

Build the top
net add node O.
net add node O.
net add node O.
net add node O.

0.

0.

logy

.0.0

.0.0

.0.1

.0.2

net add link .0.0
net node 0.1.

0.2.0.0 20
route add 0.2.0.0/32 0.2.0.0 20

28

net node 0.2.0.0 route add .0.0/32 0.1.0.0 20
net add link 0.2.0.0 0.2.0
net node 0.2.0.0 route add
net node 0.2.0.1 route add
net add link 0.2.0.1 0.2.0.
net node 0.2.0.1 route add 0.2.0.2/32 0.2.0.2 5

net node 0.2.0.2 route add 0.2.0.1/32 0.2.0.1 5

0.1
15
0.2
0.2
25

Then, we must add in nodes 0.2.0.0 and 0.2.0.2 a route to each other that goes through node 0.2.0.1.
This is done with the net node X route add command.

Add static routes between 0.2.0.0 and 0.2.0.2
net node 0.2.0.0 route add 0.2.0.2/32 0.2.0.1 10
net node 0.2.0.2 route add 0.2.0.0/32 0.2.0.1 10
Finally, the BGP protocol is enabled in routers 0.1.0.0, 0.2.0.0 and 0.2.0.2. The BGP peerings are

configured and a single network is advertised by 0.1.0.0.

Setup BGP in router 0.1.0.0
bgp add router 1 0.1.0.0
bgp router 0.1.0.0

add network 0.1/16

add peer 2 0.2.0.0

peer 0.2.0.0 up

Setup BGP in router 0.2.0.0
bgp add router 2 0.2.0.0
bgp router 0.2.0.0
add peer 1 0.1.0.0
peer 0.1.0.0 next-hop-self
add peer 2 0.2.0.2
peer 0.1.0.0 up
peer 0.2.0.0 up

Setup BGP in router 0.2.0.2
bgp add router 2 0.2.0.2
bgp router 0.2.0.2

add peer 2 0.2.0.0

peer 0.2.0.0 up

5.3. Domainsand SPT computation

In the above example, we have added two static routes between node 0.2.0.0 and node 0.2.0.2. These
routes were easy to add but when the topology becomes large, configuring static routes can become tedious.
Fortunately, C-BGP provides an alternative to a manual route setup: a shortest path tree (SPT) computation.
It is possible to compute the shortest-path from one node to a group of other nodes and automatically setup
the required routes. Today, the only way to specify the group of destination nodes is through a network
prefix, that is a prefix specifies the group of all nodes which have an IP address that matches the prefix
Usually, the prefix will cover the whole domain to which the SPT root node belongs. Indeed, an hierarchical
addressing scheme must be used in order to be able to use this facility.

The command to use for the purpose of computing the shortest path tree is net node X spf-prefix P.
The command computes the SPT rooted at node X to all the nodes in prefix P. The statements used in the
above example (5.2) for the purpose of setting up static routes between each pair of nodes in the same
domain, can thus be replaced by the following statements. In the case of large domains, it is a far more
straightforward manner to configure the intradomain routes.

29

net node 0.2.0.0 spf-prefix 0.2/16
net node 0.2.0.1 spf-prefix 0.2/16
net node 0.2.0.2 spf-prefix 0.2/16

The behaviour of the spf-prefix statement can be slightly altered with the use of the igp-inter option.
This option can take the values on and off (default) with the net options igp-inter statement. If the option
value is off, then the SPT computation will only consider as destinations the internal nodes. If the option
value is on, then the SPT computation will also consider as destinations the nodes which are tail-ends of
interdomain links.

To clarify this, let’s take the example network shown in Fig. 5.3. The network contains three domains
(which can be different ASes). A typical configuration of this topology will require running an IGP inside
each domain, which is modelled by the SPT computation, and BGP to provide reachability between the
domains. However, in order for BGP to be run, it is required for border routers to know a route towards
the tail-end of interdomain links. There are two ways to do this. The first possibility relies on the setup of
static routes on the external links. This is implemented in C-BGP with the help of the net node X route
add statement. In addition, eBGP sessions must be configured with the next-hop-self statement.

The second possibility is to insert the tail-ends of the external links in the SPT computation. It is
implemented with the help of the SPT computation and the igp-inter option being on. In this case, using
next-hop-self on eBGP sessions is useless.

Domain 1 Domain 2
0.1/16 0.2/16
/‘\

-

2

~3
5

WA

—_— e
1

[uN

internal link

m— external link

Domain 3

0.3/16

Figure 5.3: Three domains interconnected by external links.

5.4. Multi-Exit-Discriminator

In this example, we show how an AS can be configured in order to advertise routes with the MED value set
based on the IGP cost to the next-hop. We also illustrate how the MED-based rule of the decision process
can be changed in order to allow the comparison of the MED value of routes received from different
neighbor ASes, an option found in commercial routers under the name always-compare.

The example topology we use is shown in Fig. 5.4. The topology contains 4 different ASes. Each AS
is associated with a network with a /16 mask. For instance, AS1 is the network 0.1/16; AS2 is the network
0.2/16 and so on. There are multiple peerings between those 4 ASes. A single prefix 0.1/16 is advertised

30

by AS1 and we observe how it is propagated until AS4, and in particular, until router 0.4.0.5 (the lowest
router in the Fig. 5.4). We do not show in this example the script required to setup the different networks
and BGP sessions. However, the IGP weights are shown beside the links in Fig. 5.4.

Let’s now focus on the MED utilization. In our example, AS2 and AS3 advertises to AS4 routes towards
AS1’s prefix, 0.1/16, with the MED value set to the IGP cost towards the next-hop. In order to achieve this,
we must configure output filters in the border routers of AS2 and AS3. Those output filters will contain a
single rule which matches any route and whose action is to change the MED value of a matched route to
the IGP cost to its next-hop. The following script shows how it is done in router 0.2.0.3 in AS2 which has
a BGP session with router 0.4.0.3 in AS4. A similar configuration is made in routers 0.2.0.1, 0.3.0.1 and
0.3.0.2.

bgp router 0.2.0.3

peer 0.4.0.3
filter out
add-rule
match any
action "metric internal”
exit
exit
exit
exit

On the other hand, we must also configure how the MED values received by routers of AS4 will be
treated. The default behaviour is to only compare the MED values of two different routes if these routes
have been received from the same neighboring AS. This is configured with the BGP option bgp options
med deterministic. This statement must be issued before any decision is made by BGP, that is, before the
statement sim run is issued to the simulator.

Another behaviour is possible for the MED-based rule with the statement bgp options med always-
compare which means that the MED values of the routes are compared whatever the announcing AS was.

On Fig. 5.4, we show in green the route used by router 0.4.0.5 to reach destination prefix 0.1/16 when
the MED-based rule only compares the MED of routes received from the same neighbor AS. When the
deterministic mode is used (green route), the egress is 0.4.0.1. The reason for this is that routes are grouped
by neighboring AS before their MED values are compared. When comparing the MED values of routes
received from AS2, the one from received from 0.2.0.3 is prefered (the MED value is 1 while the MED
value of the route received from 0.2.0.1 is 15). When comparing the MED values of routes received from
AS3, both routes are kept because they have the same MED value, that is 5. There are thus 3 routes
remaining and the decision process then relies on the router-1D. The lowest router ID is 0.4.0.1 an the route
received from this router is thus prefered.

We show in brown the route used by router 0.4.0.5 when the MED-based rule compares all routes.
When the always-compare mode is used, the MED values of the 4 routes received from both AS2 and AS3
are compared and the route received from router 0.2.0.3, which has the lowest MED value, is selected as
best.

31

= = = deterministic

= = = always-compare

Figure 5.4: Example topology where MED is advertised.

32

Appendix A

Perl| interface

In order to ease the development of applications or scripts that interact with C-BGP, a Perl interface
is provided. This interface handles the dialog between a Perl script and a C-BGP instance. The Perl
interface comes as a module that has to be imported in the Perl script. A small set of methods is defined
in the module in order to establish the dialog between the Perl script and the C-BGP instance as well as to
send and receive messages to and from the C-BGP instance.

The Perl interface module works as follows. First, it runs the C-BGP simulator and sets up new file
descriptors in order to be able to write to C-BGP’s standard input and read from its standard output. The
Perl module relies on a separate thread to manage the communication between the Perl script and the
C-BGP instance for the purpose of avoiding buffering problems. The Perl script developper has thus little
time to spend in order to tackle these issues. By using the methods provided by the Perl module, handling
the interaction with C-BGP only takes a few lines of code.

A.l. Installation

In order to install the CBGP.pm module, it must be copied in a directory that Perl knows. To make the
installation process easier, a standard installation procedure is provided with the CBGP.pm package. Use
the following steps to proceed with the installation:

[perl CBGP-x.x]$ perl Makefile.PL
Writing Makefile for CBGP
[perl_CBGP-x.x]$ make install

If you want to install the CBGP.pm module in a non-standard or a private directory, then you must
define the PERLL I B environment variable so that it contains the path where you have installed the module.

A.2. Initialization

The following script illustrates how a basic Perl-C-BGP interaction can be setup. The first line imports the
CBGP module with the version being at least 0.3 (the version we are talking about in this section). Note
that in order to use this version of the CBGP module, we recommend that you use a version of Perl that is
no older than 5.8.3 since previous versions suffer from various bugs related to multi-threading.

use CBGP 0.3;

my $cbgp= new CBGP;
$cbgp->spawn() ;
$cbgp->send(*'set autoflush on\n');

33

Interaction with the C-BGP instance

$cbgp->Finalize();

The second line creates an instance of the CBGP object which will be responsible for handling the
interaction with the C-BGP instance. Then, the spawn method launches the C-BGP simulator and estab-
lishes the dialog. The third line configures C-BGP so that it will flush most of it output messages. This
is required in order to function in an interactive manner. At this point, the script can use the send and
expect methods to send/receive commands to/from the C-BGP instance. Finally, the last line finalize the
interaction. It shuts down the thread and closes the input descriptor of the C-BGP instance which, as a
consequence, terminates the simulator.

A.3. Interaction

Once the CBGP module has been initialized and a CBGP object has been created, the developper can send
and receive messages to/from the C-BGP simulator. The commands that can be sent to C-BGP are the
same commands as in C-BGP scripts (see Ch. 3). For instance, the following script creates a tiny topology
composed of two nodes and one link. It then traces the route from one node to the other.

$cbgp->send("'net add node 0.1.0.1\n"");
$cbgp->send(*'net add node 0.1.0.2\n"");
$cbgp->send(*'net add link 0.1.0.1 0.1.0.2 5\n"");
$cbgp->send(*'net node 0.1.0.1 spf-prefix 0.1/16\n"");
$cbgp->send(*'net node 0.1.0.2 spf-prefix 0.1/16\n"");
$cbgp->send(*'net node 0.1.0.1 record-route 0.1.0.2\n"");
my $answer= $cbgp->expect(l);
my @Ffields= split /\s+/, $answer, 4;
if ($fields[2] eq *SUCCESS”) {

print "Route: " _$fields[3]."\n";
} else {

print STDERR "Error: could not trace the route\n";

}

The first five lines create two nodes, one links and initialize the routing tables of both nodes. The sixth
line requests the simulator to trace the route from the first node to the other. The Perl script then waits
for the answer with the help of the expect method. The parameter *1’ given to the expect method means
that the call is blocking, i.e. this call will block until something has been received from C-BGP. Once the
answer has been received, the Perl script prints the route to the standard output. Note that the format of the
answer to a record-route statement is described in Ch. 3.

A.4. Checkpoints

It will often be required during a dialog with the C-BGP simulator to receive the answer from a statement
that produces an answer composed of an unknown number of lines. This is the case with commands such
as show rt or show rib. The problem with these commands is that you cannot use a blocking call to the
expect method since you do not know when the simulator has sent the whole answer.

Fortunately, a simple solution exists that makes possible to circumvent this issue, the use of checkpoints.
Checkpoints are places in the dialog where a synchronization is required. For instance, when you need to
know that the simulator has completed a request or when you need that the simulator signals that it has
finished producing its multiple lines answer, you will use checkpoints.

The simplest way to implement checkpoints with the CBGP module is to request C-BGP to write to its
output a message that you will be able to catch. For instance, after you have requested C-BGP to dump the
routing table of a node, you ask it to write a message “DONE” to its output. This example is illustrated in
the following excerpt of a Perl script.

34

$cbgp->send(*'net node 0.1.0.1 show rt *\n");
$sbgp->send('print \"DONE\\n\''\n"");
while ((my $result= $cbgp->except(1)) ne "DONE™) {

Process $result...

}

A.5. Logging

Since it will sometimes be difficult to debug the interaction between your Perl scripts and C-BGP, the
module provides a simple way to log all the commands that were sent to the C-BGP instance. In this way,
you are able to load the log file afterwards into C-BGP using the interactive mode in order to debug your
scripts.

By default, this option is turned off. To turn it on, use the following Perl command: $cbgp->log=
1. The consequence is that every subsequent command that is sent to the C-BGP instance will be written
in the file .CBGP.pm.log in the working directory. Note that this file is removed each time the command
$cbgp->new() is used.

35

Appendix B

Java Native I nterface (JNI)

B.1. Introduction

In order to ease the development of Java applications interacting with C-BGP, a Java Native Interface
(INI) is provided with C-BGP. This interface allows a direct interaction with C-BGP. The JNI comes as a
jar archive that has to be imported in the Java application.

This interface is still under development. Therefore, all the commands available with C-BGP scripting
(see Chapter 3) are not yet available through the JNI.

B.2. Installation

C-BGP can be compiled with a Java Native Interface (JNI) in order to be linked with Java applications.
For this purpose, C-BGP comes with a Java package. In order to compile C-BGP’s JNI package, you need
a Java Software Development Kit (SDK) correctly installed on your computer. You also need to give the
—enable-jni option to the ./configure script.

Once you have compiled and installed C-BGP, a jar package CBGP. jar and a dynamic library
libcsim.so will be installed in <prefix>/1ib where <prefix> is the installation directory of
C-BGP. You can then update your CLASSPATH environment variable with the full path of the jar pack-
age. With a bash shell, this can be done using the export command. For instance, the following line could
be added to the .bash_profi le file into your home directory:

[user@host]$ export CLASSPATH=$CLASSPATH:<prefix>/1ib/CBGP.jar

You may also need to tell the linker that the libcsim.so library is available by either updating your
/etc/1d.so.conf file under Linux or by adding the path to the library to your LD_L 1BRARY_PATH
environment variable or by giving the -Djava.library.path=<prefix>/lib parameter to the Java Virtual Ma-
chine (JVM).

B.3. Description of the API

The Java classes provided within the CBGP . jar archive are part of the be.ac.ucl . ingi . cbgp pack-
age. The main class is called CBGP and it currently contains all the native methods. Most of the methods
described in this section follow the same naming rules and have the same semantic than the ones described
in Chapter 3. All the methods have the public and native attributes. These attributes are not written at the
head of each command in order to enhance the readability of the documentation.

In order to use the simulator’s library, your Java application must call the init method before using any
of the methods of the CBGP class. When your application terminates, it must call the destroy method.

36

void init(String SLogFile)

This method must be used to initialize the C-BGP library. The method takes a unique argument which spec-
ifies where the C-BGP library will write its log messages. An example file could be /tmp/cbgp_jni - 1og.

void destroy()

This method cleans everything in the C-BGP library. It is supposed to free all the memory allocated during
the simulation. This method should be used once the Java application does not need the C-BGP library
anymore.

B.4. Network related methods

int netAddNode(String sAddr)

This method adds a new node to the topology. The node is identified by its IP address. This address must
be unique. When created, a new node only supports IP routing as well as a simplified ICMP protocol. If
you want to add support for the BGP protocol, consider using the bgpAddRouter method.

int netAddLink(String sSrcAddr, String sDstAddr, int iDelay)

This method adds a new link between two existing nodes whose addresses are sSrcAddr and sDstAddr in
the topology. The new link is bidirectional. The propagation delay of the link is specified by the iDelay
parameter. Note also that by default, the IGP-cost of the link is fixed at the same value

int netLinkWeight(String sSrcAddr, String sDstAddr, int iWeight)

This method changes the IGP weight of the link identified by the two end-points sSrcAddr and sDstAddr.
To the contrary of the script command net link igp-weight (see 3.2), this method changes the IGP weight
of the link for both directions).

int netLinkUp(String sSrcAddr, String sDstAddr, boolean bUp)

These method gives the possibility to change the availability of a link. By using the first method we enable
the use of a link identified by its two end-points. By using the second method it’s possible to disable a
link. Note that, as the IGP is not dynamic, when a change is made at the link level, the application has to
recompute the shortest paths (see the method netNodeSpfPrefix ?7?).

int netNodeRouteAdd(String sNodeAddr, String sPrefix, String sNexthop, int iMetric)
This method is used to add a route towards a sPrefix into the node identified by sNodeAddr. The method
specifies the route’s sNextHop and the route’s iMetric.

Note. It is often more convenient to use the nodeSpfPrefix method which computes for each
v node within a given prefix the shortest route according to the used metric.

int netNodeSpfPrefix(String sAddr, String sPrefix)

This method computes the shortest paths from the node identified by net_addr towards all the nodes which
are in the given prefix. The metric of the computed shortest paths is equal to the sum of the IGP weights
of the traversed links. The method also adds in the node’s routing table an entry for each computed path.
These routing entries are of type IGP.

37

SPT computation. The shortest paths will only be composed of links whose end-points are
o in the given prefix and which have the IGP_ADV flag set (see the nodeShowL inks method for
more information).

Vector netNodeGetL inks(String sAddr)

This method returns a vector of Link objects. The Link class is defined in the CBGP.jar archive. Each
Link object contains the attributes of one link of the node identified by sAddr. See the documentation of
the Link class for mode information.

Vector netNodeGetRT(String sNodeAdd, String sPrefix)

This method returns the content of the routing table of node sNodeAddr. This method is similar to the net
node show rt described in Chapter 3. The method returns a Vector of IPRoute objects.

B.5. BGPreated methods

int bgpAddRouter(String sName, String sRouterAddr, int iIASNumber)

This method adds BGP support into the node identified by sRouterAddr. The node thus becomes a BGP
router. The method also configures this router as a member of the domain identified by iASNumber and
adds a sName to it.

int bgpDomainRescan(int iIASNumbe)

This method is similar to the bgp domain rescan command described in Chapter 3.

int bgpRouterNetworkAdd(String sRouterAddr, String sNetwork)

This method adds a local network that will be advertised by this router. The given network will be origi-
nated by this router.

int bgpRouterNeighborAdd(String sRouterAddr, String sPeerAddr, int iASNumber)

This method adds a new BGP neighbor to the router identified by sRouterAddr. The peer belongs to the
domain identified by iASNumber and is identified by sPeerAddr. This method also configures for this
neighbor default input and output filters that will accept any route.

void bgpRouterNeighborNextHopSelf(String sRouterAddr, String sPeerAddr)

This method is used to change the router’s behavior when updating the next-hop attribute. If the route
announced to the other peer is the router received by sRouterAddr then the next-hop of this route will be
replaced by the address of the router (sPeerAddr).

int bgpRouterPeerUp(String sRouterAddr, String sPeerAddr, boolean bUp)

This method changes the status of the BGP session with the peer identified by sPeerAddr. If bUp is true,
the session is established. Otherwise, the session is teared down. This command is similar to the following
commands: bgp router peer up and bgp router peer down.

int bgpRouterRescan(String sRouterAddr)

This method rescans RIBs of the domain’s routers. It is similar to the bgp domain rescan described in
Chapter 3.

38

Vector bgpRouterGetRib(String sRouterAddr, String sPrefix)

This method returns the routes installed into the Loc-RIB of the router identified by sRouterAddr. The
command is similar to the bgp router show rib command described in Chapter 3. The BGP routes are
returned in a Vector of BGPRoute objects.

Vector bgpRouterGetAdjRib(String sRouterAddr, String sNeighborAddr, String sPre-
fix, boolean bin)

This method returns the routes received from (advertised to) the selected peers of the router identified by
sRouterAddr, i.e. the content of the Adj-RIB-Ins (Adj-RIB-Outs) of the given router. If bln is true, the
content of the Adj-RIB-Ins is returned. Otherwise, the content of the Adj-RIB-Outs is returned.

The command is similar to the bgp router show rib-in command described in Chapter 3. The BGP
routes are returned in a Vector of BGPRoute objects.

B.6. Simulation related methods

int simRun()

This command starts the simulator, i.e. its starts processing the queued events until no more event is
available or the simulator is stopped.

B.7. General purpose methods

void runCmd(String sCommand)

This method can be used to directly send commands to the C-BGP simulator. The acceptable commands
are listed in Chapter 3.

B.8. IPAddressclass
B.9. IPPrefi x class
B.10. Link class
B.11. Routeinterface
B.12. IPRouteclass
B.13. BGPRoute class

39

Appendix C

GNU Lessar General Public License

GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library
Public License, version 2, hence the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By con-
trast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free
software—to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software packages—
typically libraries—of the Free Software Foundation and other authors who decide to use it. You can use
it too, but we suggest you first think carefully about whether this license or the ordinary General Public
License is the better strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software (and
charge for this service if you wish); that you receive source code or can get it if you want it; that you can
change the software and use pieces of it in new free programs; and that you are informed that you can do
these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or
to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the
recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide complete object files to the recipients, so
that they can relink them with the library after making changes to the library and recompiling it. And you
must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this
license, which gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the free library.
Also, if the library is modified by someone else and passed on, the recipients should know that what they
have is not the original version, so that the original author’s reputation will not be affected by problems
that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to make
sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive license

40

from a patent holder. Therefore, we insist that any patent license obtained for a version of the library must
be consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License.
This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite
different from the ordinary General Public License. We use this license for certain libraries in order to
permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library, the combination
of the two is legally speaking a combined work, a derivative of the original library. The ordinary General
Public License therefore permits such linking only if the entire combination fits its criteria of freedom. The
Lesser General Public License permits more lax criteria for linking other code with the library.

We call this license the "Lesser" General Public License because it does Less to protect the user’s
freedom than the ordinary General Public License. It also provides other free software developers Less of
an advantage over competing non-free programs. These disadvantages are the reason we use the ordinary
General Public License for many libraries. However, the Lesser license provides advantages in certain
special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use of a
certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed
to use the library. A more frequent case is that a free library does the same job as widely used non-free
libraries. In this case, there is little to gain by limiting the free library to free software only, so we use the
Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater number of
people to use a large body of free software. For example, permission to use the GNU C Library in non-free
programs enables many more people to use the whole GNU operating system, as well as its variant, the
GNUY/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does ensure
that the user of a program that is linked with the Library has the freedom and the wherewithal to run that
program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention
to the difference between a "work based on the library™ and a "work that uses the library”. The former
contains code derived from the library, whereas the latter must be combined with the library in order to
run.

GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CON-
DITIONSFOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser
General Public License (also called "this License™). Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be conveniently
linked with application programs (which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work which has been distributed under these
terms. A "work based on the Library" means either the Library or any derivative work under copyright law:
that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or
translated straightforwardly into another language. (Hereinafter, translation is included without limitation
in the term "modification™.)

"Source code" for a work means the preferred form of the work for making modifications to it. For
a library, complete source code means all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running a program using the Library is not restricted, and output from such a
program is covered only if its contents constitute a work based on the Library (independent of the use of
the Library in a tool for writing it). Whether that is true depends on what the Library does and what the

41

program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based
on the Library, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed the files and
the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third parties under the terms
of this License.

d) If a facility in the modified Library refers to a function or a table of data to be supplied by an
application program that uses the facility, other than as an argument passed when the facility is invoked,
then you must make a good faith effort to ensure that, in the event an application does not supply such
function or table, the facility still operates, and performs whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely well-defined
independent of the application. Therefore, Subsection 2d requires that any application-supplied function or
table used by this function must be optional: if the application does not supply it, the square root function
must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Library, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Library, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a
work based on the Library) on a volume of a storage or distribution medium does not bring the other work
under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License
to a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that
they refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer
version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that
version instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General
Public License applies to all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a
library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with
the complete corresponding machine-readable source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place satisfies the requirement to distribute the
source code, even though third parties are not compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work with
the Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in
isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License.

42

However, linking a "work that uses the Library™ with the Library creates an executable that is a deriva-
tive of the Library (because it contains portions of the Library), rather than a "work that uses the library".
The executable is therefore covered by this License. Section 6 states terms for distribution of such executa-
bles.

When a "work that uses the Library" uses material from a header file that is part of the Library, the
object code for the work may be a derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be linked without the Library, or if the work is
itself a library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small
macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted,
regardless of whether it is legally a derivative work. (Executables containing this object code plus portions
of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work
under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or
not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a "work that uses the Library"
with the Library to produce a work containing portions of the Library, and distribute that work under terms
of your choice, provided that the terms permit modification of the work for the customer’s own use and
reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the
Library and its use are covered by this License. You must supply a copy of this License. If the work during
execution displays copyright notices, you must include the copyright notice for the Library among them,
as well as a reference directing the user to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code for the Library
including whatever changes were used in the work (which must be distributed under Sections 1 and 2
above); and, if the work is an executable linked with the Library, with the complete machine-readable
"work that uses the Library", as object code and/or source code, so that the user can modify the Library
and then relink to produce a modified executable containing the modified Library. (It is understood that the
user who changes the contents of definitions files in the Library will not necessarily be able to recompile
the application to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one
that (1) uses at run time a copy of the library already present on the user’s computer system, rather than
copying library functions into the executable, and (2) will operate properly with a modified version of the
library, if the user installs one, as long as the modified version is interface-compatible with the version that
the work was made with.

c¢) Accompany the work with a written offer, valid for at least three years, to give the same user the ma-
terials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy from a designated place, offer equiva-
lent access to copy the above specified materials from the same place.

e) Verify that the user has already received a copy of these materials or that you have already sent this
user a copy.

For an executable, the required form of the "work that uses the Library" must include any data and utility
programs needed for reproducing the executable from it. However, as a special exception, the materials to
be distributed need not include anything that is normally distributed (in either source or binary form) with
the major components (compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that
do not normally accompany the operating system. Such a contradiction means you cannot use both them
and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single library
together with other library facilities not covered by this License, and distribute such a combined library,
provided that the separate distribution of the work based on the Library and of the other library facilities is
otherwise permitted, and provided that you do these two things:

43

a) Accompany the combined library with a copy of the same work based on the Library, uncombined
with any other library facilities. This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based on the
Library, and explaining where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute
the Library is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Library or its derivative works. These actions are prohibited by
law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work
based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions
for copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient automati-
cally receives a license from the original licensor to copy, distribute, link with or modify the Library subject
to these terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if
a patent license would not permit royalty-free redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply, and the section as a whole is intended to apply in other circum-
stances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser General
Public License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of
this License which applies to it and "any later version", you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Library does not specify a license version number, you may choose any version ever published by the Free
Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution con-
ditions are incompatible with these, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make

44

exceptions for this. Our decision will be guided by the two goals of preserving the free status of all deriva-
tives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHER-
WISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE LIBRARY ISWITH YOU. SHOULD THE LIBRARY PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFT-
WARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

45

